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1. Short Description of Project  
The objective of the Virtual Liver is to aid in assessing the human risk of chronic liver toxicity in silico from 
environmental chemicals. We believe computational systems modelling can be used predict organ injury 
due to chronic chemical exposure by simulating: (i) the dynamics of perturbed molecular pathways, (ii) 
their linkage with adaptive or adverse processes leading to alterations of cell state, and (iii) the 
integration of the molecular and cellular responses into a physiological tissue model. This will be 
accomplished through two strategic initiatives: (a) a knowledgebase (KB) to logically model the relevant 
physiologic entities and their interactions at molecular, cellular and tissue scales; and (b) a multiscale 
agent-based simulation to predict the dose-dependent perturbations of pathways to chronic liver injury. 
The 1-2 year goal of the project is to focus on modeling a physiologic outcome (e.g. hyperplasia) as a 
proof of concept. In the next 3-5 years this will be expanded to evaluate an apical toxicity endpoint across 
rodents and humans. The long-term vision for the project is to provide estimates for the risk of injury due 
to different chemicals, across genders, life-stages and populations. If successful, the Virtual Liver is 
expected to reduce dependence on animal testing through effective in silico predictions. 
  
2. What is the EPA Context for this Project ?  
Assessing the quantitative risk of human injury by extrapolation from animal toxicity studies is fraught with 
uncertainty because: (a) pathways of chemical-induced injury can vary between species; and (b) 
pathways activated by high-doses of chemicals may not be the same as those stimulated by low-dose 
long-term exposure. The increasing scientific, ethical and economic impetus for alternative toxicity testing 
approaches was highlighted in a recent report (NRC, 2007). In addition to enabling more scientifically 
based estimates of risk for human toxicity, it is also vital to predict the level of risk based on age, gender 
or other susceptibility criteria. Currently, the EPA ToxCast™ program is evaluating molecular and cellular 
in vitro assays to empirically predict long-term toxicity for chemical prioritization (Dix et. al., 2007). These 
data provide a valuable opportunity, in conjunction with other data streams, for quantitative modeling  
using in vitro data.  
 
Animal studies show a range of chemical-induced injury including developmental defects, reproductive 
effects, neurological dysfunction, and organ 
damage (liver, kidney, lung, etc). The critical 
effect, which is the first adverse effect 
observed with an increasing dose of the test 
chemical, is used to estimate the allowed 
exposure level of a chemical. Figure 1 shows 
the distribution of critical effects by organ for 
more than 500 orally consumed environmental 
chemicals from the US EPA Integrated Risk 
Assessment System (IRIS) www.epa.gov/iris. 
The liver is the most frequent source of critical 
effects. As the primary organ for metabolising 
chemicals in the body, the liver is the most 
common and earliest site of injury for a wide 
range of environmental toxicants. Therefore 
understanding and predicting dose-dependent Figure 1. Percentage of chemicals  tested showing critical 

effects by organ 

% 
chemicals 
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liver injury should have a broad impact on assessing the risk of new chemicals.  
 

Figure 2. Shows some of the key events in the modes of liver injury. The acute or chronic nature of 
chemical exposure has been found to play a role in determining the type of liver damage. The mode of 
action for acute injury often includes cytoplasmic, mitochondrial and nuclear alterations (e.g. hydropic, 
fatty, Mallory bodies, etc) that can lead to necrosis. For chronic liver injury, one mode of action includes 
recurring damage, e.g. necrosis followed by regenerative proliferation, which causes fibrosis (scarring) 
that may lead to cirrhosis. Chronic exposure can also cause cancer through at least two major modes of 
action: genotoxic and non-genotoxic. Genotoxic cancer occurs in multiple steps: (i) initiation, in which 
chemical mutagens cause 
DNA damage rendering a 
cell resistant to apoptosis, 
inhibition of cell proliferation, 
and (ii) promotion, in which 
mitogenic signals persistently 
stimulate the initiated cell 
creating focal proliferation. 
This can lead to neoplastic 
legions. In non-genotoxic 
cancer, persistent molecular 
perturbations due to 
xenobiotics are believe to 
deregulate cell cycle 
checkpoints, increasing cell 
proliferation, which in turn 
elevates the risk of genotoxic neoplastic lesions. Critical effects in the liver are often graded by propensity 
for cancer: non-neoplastic (e.g. necrosis, inflammation, steatosis, fibrosis), preneoplastic (e.g. 
proliferation, hyperplasia), and neoplastic (e.g. adenoma, carcinoma). Animal testing points to liver 
cancer as one of the important chronic liver toxicity endpoints for environmental chemicals (Martin, et. al. 
2007). While mutagens can be identified readily through DNA damage assays ruling out genotoxic 
cancer, non-genotoxic carcinogens have no established biomarkers and present a serious challenge for 
risk assessment. One mode of action for non-genotoxic cancer begins with nuclear receptor (NR) 
activation. Surprisingly, a number of high volume environmental chemicals including, pesticides 
(conazoles and pyrethroids), flame retardants (DE-71), plasticizers (phthalates) and other persistent toxic 
substances (PFAAs, PCBs) are non-genotoxic rodent carcinogens and nuclear receptor (NR) activators. 
Thus, a focus on modeling NR-mediated non-genotoxic cancer by (i) mechanistically relating early 
molecular events to cell perturbations, cellular perturbations to tissue lesions; and (ii) extrapolating these 
mechanisms between species, will provide valuable tools for assessing the risk of key environmental 
chemicals of relevance to the EPA.  
 
3. What are The Strategic Directions and Scientific Challenges ? 
Our hypothesis is that chronic liver injury is due to: (a) the response of molecular networks perturbed by 
xenobiotics, (b) the dynamics of adaptive cellular processes coping with external stress leading to the 
preservation or alteration of cell state (survival/division/death), and (c) the tissue dynamics as networks of 
cells adapt in response to gradients of xenobiotics and nutrients carried by blood flow giving rise to 
normal or adverse histomorphologic changes. Testing this hypothesis in silico presents two important 
computational challenges. First, qualitative insight into mechanisms is incomplete and dispersed across 
disparate structured or unstructured biological information sources. Second, modeling tissue injury 
dynamics in terms of complex molecular, cellular and tissue processes is difficult. We propose two 
strategic directions to address these challenges: (i) a knowledgebased approach to organize complex 
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mechanistic information, and (ii) a multiscale simulation approach to analyze histomorphometric changes 
emerging for the collective behavior of liver cells, where each cell autonomously processes local 
information through programmes encoded in molecular circuits. These strategic initiatives are aligned 
with the National Research Council’s report on “Toxicity Testing in the 21st Century: A Vision and a 
Strategy,” which emphasizes the need for innovative approaches for testing toxicity of chemicals in 
humans.  
 
Knowledgebased, or semantic, approaches (Karp 2001) deal with the incomplete and evolving insight on 
complex mechanisms. They enable integration of disparate biological information from literature, -omic 
data, or pathway databases at different scales into coherent mechanistic representations in a flexible, 
extensible, transparent and logical framework. The Liver Knowledgebase (KB) will manage mechanistic 
concepts formally (through ontologies) and associated facts that will be amenable to computation, 
queries and visualization for a range of scientists and risk-assessors across the EPA. Large-scale 
knowledgebased approaches have become feasible due to semantic web technology and ontologies are 
being developed to represent different levels of biological organization. The recently established National 
Center for Biomedical Ontology1 provides a resource for the broader application of knowledgebased 
approaches in biology and will be leveraged by the proposed effort.  
 
Virtual tissues are an emerging area of computational research aimed at integrating biological 
phenomena at multiple scales in order to simulate macroscopic behavior from cellular properties. 
Quantitative liver histopathology data has been used for modeling toxicity in population-based multistage 
models of carcinogenesis (Armitage 1954, Moolgavkar 1978) and for quantitative modeling of dose-
dependent toxicity of environmental chemicals (Conolly 1993). Traditionally, physiologic modeling is used 
to study target-organ dose (PB/PK) and toxicity (PB/PD). More recently, computational physiology 
(Hunter 2003) has emerged as the integration of systems biology with physiology to model mechanisms 
at the molecular, cellular and tissue level. Virtual tissues are multiscale models that aim to predict 
behavior using dynamic models of molecular pathways, tissue structure and biofluid flow. Multiscale 
organ models have been developed for the heart (Nickerson et. al. 2005; Laganà et. al.  2005; 
Bassingthwaighte et. al.  2005; Shim et. al. 2006; Kerckhoffs et. al.  2007), the lung (Ma et. al.  2006; 
Klinke et. al. 2007), the brain (Robinson et. al.  2005) and tumour growth (Athale et. al.  2005). A 
multiscale model of hepatic function has not been developed thus far, though efforts on cellular models of 
hepatocytes are on-going under the auspices of the European Community HepatoSys project (Klamt et. 
al.  2007; Saez-Rodriguez et. al.  2006).   
 
4. What are the short-term (1-2 year) and long-term (3-5 year) goals?  
The 5-year plan for the Virtual Liver Project is to develop a knowledgebase for qualitatively describing 
species-specific toxicity pathways due to chronic exposure to chemicals, and to develop a virtual liver 
tissue that lays the foundation for quantitatively predicting the risk of non-genotoxic neoplastic lesions 
due to NR activators in humans. If successful the system will be extended to represent additional modes 
of action. The short-term goals of the project are to: (a) curate mechanistic knowledge about non-
genotoxic cancer in rodents and humans and to formally describe the species differences; (b) develop 
initial dynamic models of literature-derived NR-mediated molecular interaction networks, beginning with 
xenobiotic metabolism; and (c) develop an initial tissue level model of the hepatic lobule representing the 
key cell types, their interactions, and the nutrients and xenobiotic gradient due to blood flow. The long-
term goals are to: (a) extend the KB with additional molecular mechanisms; (b) expand the molecular 
interaction network to include additional key modules in relation to cell states; and (c) integrate the cell 
state model into the tissue model for multiscale simulation of injury.  
 

                                            
1 http://www.bioontology.org 
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Molecular and cellular scope. NRs activated by 
xenobiotics mediate the expression of enzymes 
that metabolize them to more soluble forms for 
excretion. Through pathways that are not 
completely understood, cell-cycle checkpoints 
can be deregulated, leading to increases in cell 
division. Chronic exposure to chemicals can 
lead to persistent cell proliferation, which can 
ultimately lead to the formation of neoplastic 
lesions. NRs are a multi-domain protein 
superfamily with ligand-binding (receptor) and 
DNA-binding (transcription factor) functions. 
The constitutive androstane receptor (CAR), 
pregnane X receptor (PXR), and peroxisome 
proliferator activated receptor alpha  (PPAR-α) 
are NRs that transcriptionally regulate homeostatic responses to exogenous chemicals, for example 
xenobiotic metabolism. For example, tricholoroethylene (TCE) , di(2-ethylhexyl)-phthalate (DEHP) and 
perfluorooctanoic acid (PFOA) are PPAR-α activators (Maloney and Waxman 1999); while the pesticides 
methoxychlor, endosulfan, dieldrin, DDT, conazoles, and the plasticizer nonylphenol activate either PXR 
or both PXR and CAR (Kretschmer and Baldwin 2005). Increasing evidence suggests that NRs may 
mediate the toxicity of a number of environmental chemicals (Butler 1996). Some components of 
xenobiotic metablism have been well studied for CAR (Figure 3), PXR and PPAR-α, but many 
downstream intracellular and intercellular mechanisms leading to adverse outcomes remain to be 
deciphered. The genes, proteins and small molecules associated with the NR-mediated signaling and 
XME induction forms the first level of mechanistic information that will be curated in the knowledgebase. 
The second level of information will involve the organization of key intra-cellular processes leading to 
alterations in cell state (death/division). A great deal of information about NR-activators has been 
published. Furthermore, we are also designing rodent and human in vitro studies (in close collaboration 
with the ToxCast™ project) that will generate useful data key biological processes, transcript and 
metabolite profiles for liver cell types. These data will be used to verify curated knowledge, to discover 
causal molecular networks (D'haeseleer et. al. 2000), and to calibrate/evaluate a dynamic model of NR-
mediated intracellular processes. 
 
Tissue scope. The mammalian liver consists of around 105 to 106 lobules that receive blood supply from 
the hepatic artery and the portal vein. The hepatic lobule (Figure 4) is believed to represent the functional 
unit of the liver (Teutsch 2005) and will be used as the appropriate level for abstracting tissue-level 
response. Within each lobule liver cells are arranged in collateral plates one to two cells thick organized 
radially around the central vein. Blood flows from  the hepatic venule and the hepatic arteriole though 
intervening spaces between the cells, called sinusoids (Motta 1974), 
and collects in the central vein. Regions of the lobule are divided 
into zones, based on oxygen gradient: zone 1 lies around portal 
tracts with the highest oxygen supply, zone 3 is surrounds the 
central vein and has the poorest oxygen supply, and zone 2 lies in 
between. The zones exhibit differential distribution of gene induction 
(Pette and Wimmer 1979; Oinonen et. al. 1998) proteins and 
metabolites. Furthermore, many lesions are also zonally distributed 
(Kato et. al. 2001). The cause zonation is not completely known but 
it has been attributed to development (Schmucker et. al. 1976; 
Lamers et. al. 1987), and also to the distribution of nutrients and 
oxygen across the lobule (Kietzmann et. al. 2006). The spatial organization of the lobule in terms of the 
cells and the blood flow are important is for understanding emergence of tissue-level injury due to 

s

Figure 4. Hepatic Lobule
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chemicals. Each lobule is composed of parenchymal cells (hepatocytes) and non-parenchymal cells, 
which occupy a much smaller volume but account for nearly half of the cell number. Non-parenchymal 
cells are believed to serve critical hepatic functions. For example, sinusoidal epithelial cells (SECs) are 
important for filtration, Kupffer cells (KC) are the resident macrophages that secrete mediators of 
inflammatory response, and hepatic stellate cells (HEC), also known as Ito cells, store fat, vitamin A and 
play a role in extracellular matrix remodeling (Kmieć 2001). Another cell type found in the sinusoids are 
granular lymphocytes, or Pit cells, that spontaneously kill 
different tumour cells. There is also increasing evidence 
that communication between parenchymal and non-
parenchymal cells is relevant in chronic liver injury (Figure 
5). KC have been shown to mediate liver toxicity and 
cancer for PPAR-α activators (Rusyn 1998; Roberts 2007); 
HEC are involved in fibrosis and fatty liver disease 
(Reeves 1996); and tumour-promoting agents disrupt gap 
junction intercellular communication (Krutovskikh et. al. 
1995). The lobular entities including, the different cell 
types, sinusoids, blood flow and their relationships 
represent the tissue level information that will be curated in 
the KB. This information will be used to develop a spatial 
model of cellular networks in the hepatic lobule. 
 
Knowledgebase development & text-mining. Open source 
tools will be used to build the KB (Protégé, Noy et. al. 
2000), which will be coupled with an OWL-compliant 
(Antoniou and Harmelen 2004) database-backend for 
storage (e.g. Sesame), and an open-source reasoning 
engine to support queries. The knowledgebase will be 
bootstrapped by manually curating facts on molecules, cells, lobule structure and their interactions 
related to normal physiology and its perturbation by NRs leading to non-genotoxic cancer. The initial facts 
will extended using public domain information sources including NCBI Genome, Gene, Interaction, 
Protein; GeneOntology (Harris et. al. 2004); SwissProt (Boeckmann et. al. 2003); KEGG (Kanehisa et. al. 
2006); MetaCyc (Caspi et. al. 2006); and Reactome (Vastrik et. al. 2007). Open source text-mining tools 
will be evaluated to semi-automate the identification of relevant entities and the extraction of facts about 
their relationships from PubMed abstracts or full-text articles (Palakal el. al. 2002; Hu el. al. 2004; Muller 
el. al. 2004; Doms and Schroeder 2005; Wilbur el. al. 2006; Yuryev el. al. 2006). This effort will be closely 
coordinated with the Virtual Embryo project, which has similar text-mining needs.  
 
Multiscale Modeling and Simulation.  Information about the complex interactions between molecular, 
cellular and tissue level processes organized in the KB will be used to develop dynamic models of 
chemical-induced response. First, mechanistic models describing early molecular interactions of 
environmental chemicals with nuclear receptors (NRs) namely, CAR, PXR and PPAR-α will be 
developed. We plan to use Probabilistic Boolean Networks (Kauffman 1993; Shmulevich et. al. 2002) 
initially to understand the overall dynamics of NR-mediated signaling and interspecies differences. If 
sufficient quantitative data on molecular entities become available, traditional continuous deterministic 
models will also be explored. Second the intracellular molecular response modules leading to changes in 
cell state, namely proliferation and apoptosis, will be modeled. Since changes in cell state are being 
represented categorically, they will be simulated using discrete stochastic simulation methods. These 
models will advance the two-stage clonal growth models of cancer (Conolly and Andersen 1997). In 
addition, they will include intercellular descriptions of paracrine signaling between parenchymal and non-
parenchymal cells, which are known to play a role in liver injury (Rusyn 1998; Roberts 2007; Reeves 
1996; Krutovskikh et. al. 1995). The third biological scale integrates these models into a spatial model of 

Figure 5. Liver  cell-cell interactions.in hepatic lobule 
(Billiar and Curran 1992) 
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the hepatic lobule.  At this scale, the response of cellular networks is simulated in the context of portal to 
centrilobular blood flow, represented as a gradient of of nutrients and xenbiotics. The spatial model of the 
hepatic lobule will be initially developed using an agent-based modeling (ABM) approach (Axelrod, 1997; 
Epstein and Axtell, 1996; Athale et. al.. 2005) in which cells will be modeled as autonomous agents. ABM 
is a useful formalism because it can (i) predict emergence of chronic tissue injury due to simple 
interactions between a few cell types; (ii) describe the lobular architecture naturally using descriptions of 
intercellular communication; (iii) encapsulate adaptive and complex cellular responses to xenobiotic and 
nutrient inputs; and (iv) directly utilize information in the Liver KB about tissue components and their 
relationships. If resources are available, we also propose to integrate this into a pharmacokinetic model 
to estimate dosimetry and subsequent damage. Performance metrics will be developed for evaluating the 
accuracy of the Virtual Liver modules for predicting dose-dependent injury.  
 
5. What other components of EPA or outside organizations are involved?  
Relationship with existing EPA efforts. The Virtual Liver Project will be synergistic with the following 
projects / individuals: ToxCast™ (Dix et. al. 2007); The Virtual Embryo; ToxRefDB (Martin et. al. 2007); 
ACToR (Judson et. al. 2007); metabolomics (Tim Collette, NERL); exposure modeling (Miles Okino, 
NERL); in vivo / in vitro experiments and modeling endocrine disruption by NR-activators leading to 
thyroid toxicity (Mike DeVito, NHEERL); domain expert providing input on liver histopathology (Doug 
Wolf, NHEERL); risk assessment (Rob Dewoskin and Paul Schlosser, NCEA); transript profiling (Chris 
Corton, NHEERL); systems biology (Stephen Edwards, NHEERL); steering committee (Julian Preston, 
NHEERL); physical simulation and modeling (Richard Spencer, Lockheed Martin); knowledgebase 
development (Lynn Meredith, Lockheed Martin). We are also initiating dialogue with the EPA program 
offices to identify key stakeholders in the project.  
Relationship with government agencies. The Virtual Liver team is communicating with the NIEHS (David 
Balshaw) to establish links with hepatotoxicity-related intramural research efforts, the NIBIB multiscale 
simulation initiative and with the joint European Commission-US Task Force on Biotechnology to identify 
areas of common research sinterest on virtual tissues with Europe. In order to facilitate discussions and 
engage experts in the field, we are planning to hold a workshop in Fall 2008. 
Relationship with non-profit / academic institutions. The Virtual Liver team is collaborating with the 
Hamner Institute on chronic liver toxicity experiments, genomics and co-culture in vitro systems; and are 
in discussions with EPA funded STAR centers (UNC, CH and UMDNJ) on toxicology, systems modeling 
and text-mining; Center for Computational Pharmacology, University of Colorado on knowledgebases 
and text-mining; National Institute of Biomedical Ontologies for ontology development. Initial discussions 
have also taken place with members of the SBML team while communication with the Physiome project 
is underway to ensure that models developed by the project will be freely available using existing 
standards.  
 
1. How is data management being achieved? 
All empirical data including molecular, cellular and phenotypic assays will be managed in ACToR (Judson 
et. al. 2007). Information about mechanisms or the mode of action will be managed in the Liver KB , 
which will be freely made available in OWL (Web Ontology Language) and through custom web-based 
interfaces for searching and browsing; and, biological models will be made freely available using existing 
standards CellML (Nickerson, 2005) or SBML.  
 
7. What are the measures of success?  
Short-term: 
• Organizational: Identification of key stakeholders / risk assessors and domain experts to serve as 

curators/reviewers for KB; recruitment of key participants  
• Deployment of Liver KB representing key molecular and cellular pathways for NR-mediated non-

genotoxic cancer (between rodents and humans) 
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• In vitro data generation for use in molecular and cellular models 
• Initial dynamic models for (a) NR-mediated regulation of xenobiotic metabolism and (b) hepatocytes 

and Kupffer cell interactions 
• Peer-reviewed publication of KB and predictive models in computational / toxicology journals 
• Outreach: Educate internal/external scientific community on the roles/needs for system modeling in 

environmental toxicology 
Long-term: 
• Expansion of Liver KB to include additional modes of chronic liver injury 
• Multiscale liver tissue model for predicting chronic injury 
• in vivo data for system evaluation / refinement 
• Publication of results & outreach 
• Impact on-going risk assessment 
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